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I. INTRODUCTION

Robots often lack full autonomy, necessitating human
teleoperation, such as in surgery or hazardous interventions,
and extending to embodying human presence remotely, as
seen in projects like the ANA Avatar Xprize [1]. However,
challenges such as communication delays, obstructions, com-
plex interfaces, and operator expertise persist, affecting tele-
operation efficacy. Shared autonomy enhances teleoperation
by providing robots with partial autonomy, assisting teleop-
erators in task completion—for example, inferring operator
goals and autonomously positioning grippers for object ma-
nipulation, expediting processes. Yet, current shared auton-
omy approaches face difficulties in dynamic environments.
This paper introduces a novel shared autonomy framework
addressing this challenge.

The methodology employs a Multimodal Language Model
(MLM) to dynamically analyze the robot’s environment,
identifying potential tasks for the operator. Subsequently,
goal recognition using a Hidden Markov Model (HMM)
predicts the operator’s most probable task, refining robot
motion accordingly. This ongoing research emphasizes lever-
aging MLM for dynamic environmental adaptation. Re-
cent advancements in Large Language Models (LLM) and
MLM have substantially enhanced reasoning capabilities,
with Google researchers demonstrating the feasibility of
issuing high-level commands to robots, translated into low-
level commands executed by the robot [2].

This framework consists of three components: MLM-
based dynamic environment identification and goal genera-
tion, goal recognition using HMM, and assistance, determin-
ing when and to what extent the operator should be assisted
with the robot.

II. MAIN METHOD

A. Interpreting the environment

Current shared autonomy frameworks face challenges
in adapting to dynamic environments, often constrained
by predefined settings where robots possess precise object
knowledge. However, introducing new objects, relocating
existing ones, or adjusting the robot’s position can hinder
these frameworks’ effectiveness. To tackle this, we propose
leveraging MLM.

Initially, the robot can use video feedback to identify
objects in its vicinity. Real-time object detection algorithms
like YOLO8 can assist in this process. Building on [2]
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approach, we combine these visuals with high-level action
keywords familiar to the robot (e.g., ”grab,” ”pour,” ”move
to”). This fusion dynamically generates user goals, denoted
as G = g1, g2, ..., gn. Each goal gi correlates with a high-
level action tied to an object (e.g., ”grab the bottle”).
Refinement of these goals incorporates knowledge of the
robot’s current state and preconditions, filtering achievable
goals from unattainable ones (e.g., ”pour the bottle” requires
first ”grabbing the bottle”), thus optimizing computational
efficiency.

This method enables the generation of potential goals,
empowering users within the shared autonomy framework
across diverse scenarios. To manage computational load,
we address the timing of goal updates. Updating after goal
achievement or when the environment’s object count changes
significantly by more than N from the prior step offers viable
strategies.

In summary, by integrating MLM with object recognition,
we enhance shared autonomy frameworks’ adaptability, en-
abling efficient goal generation and dynamic assistance in
varied contexts. Strategic goal updating further optimizes
computational resources, ensuring practical implementation.

B. Goal recognition

When potential goals have been identified, our framework
needs to predict which goal is the most likely to be pursued
by the user in order to assist them. User interaction with
the robot for task execution involves a discrete goal set
G = g1, g2, ..., gn, with n goals. Actions, such as controller
input, eye tracking, and robot motion, are observed. The
observation vector Θt = θ1t , θ

2
t , ..., θ

k
t at time t varies in

size (k). Real-time inference of the user’s current goal g∗

is attempted based on these observations. Our observations,
sourced directly from teleoperation system feedback, are
presumed to be complete. However, user actions may change
due to personal will, potentially leading to goal shifts or
indecision during task execution. Inspired by [3], we adopt
a Bayesian filtering approach within a Hidden Markov
Model (HMM) for goal recognition. HMM hidden states
represent achievable goals (G) alongside an ”Undecided”
state, denoted as Undecided ∈ G indicating the absence
of a specific goal pursuit. Observations (O) encompass
all possible observation vectors. Figure 1 illustrates this
HMM, where user transitions within upper states (G) directly
influence observation likelihoods. The Forward Algorithm
coupled with the law of total probability and the chain rule
can be utilized to model a probability distribution over G,
reflecting uncertainty in candidate goals. We first consider



Fig. 1. HMM diagram illustrating our goal recognition problem. Upper
states represent different states in G and their transitions, influencing the
lower observation set O.

the case of a single observation at each time step, where
Θt = θt is a vector of dimension one. We use the colon
notation θ0:t for the sequence of observation θ0, ..., θt, we
define bt(gt) as the belief of the user pursuing goal g ∈ G
at time t, as follows:

bt(gt) = P (θt|gt)
∑

gt−1∈G

P (gt|gt−1)bt−1(gt−1) (1)

Equation 1 is used to compute bt(gt) in the context of a
single observation at each time step. However, we aim to
incorporate multiple observations, as a greater volume of data
typically enhances goal prediction accuracy. We now address
the case of Θt = θ1t , θ

2
t , ..., θ

k
t being of dimension k > 1.

We assume that the distinct observations θ1t , θ
2
t , ..., θ

k
t are

conditionally independent given a goal g. Hence, we can
express equation 1 as:

bt(gt) = (
∏

θt∈Θt

P (θt|gt))
∑

gt−1∈G

P (gt|gt−1)bt−1(gt−1) (2)

Computing this for all g ∈ G provides us with the estimated
distribution bt representing our belief regarding the user’s
goal across the set G at time t. To determine g∗t , we simply
select the goal g that maximizes the value of bt.

In contrast to many shared autonomy methods, which
rely on trajectory planning to approximate the likelihood
value P (θt|gt) and may incur computational overhead, we
adopt a landmark heuristic inspired by [4]. In the pursuit
of a goal, a landmark denotes a fact or action essential
for its achievement. We employ the principle of Landmark
Uniqueness, which involves assessing the occurrence of this
landmark across various goals.

C. Assistance

Deciding when and how much a robot should assist a user
is complex. Our goal recognition model isn’t perfect. As
Meneguzzi and Pereira [5] note, no existing approach can
make flawless online predictions. Thus, we must consider
the possibility of model errors leading to incorrect robot
assistance. This could harm teleoperation performance in-
stead of improving it. To assess our predictions, we gauge
the confidence in them. Dragan et al. [6] proposed various

methods for computing confidence. We opt to compute con-
fidence based on the entropy of the probability distribution
bt, denoted as conf :

conf = 1 +

∑
gt∈G

bt(gt)log(bt(gt))

Hmax
(3)

Here, Hmax represents the maximum value that the entropy
(the numerator) could reach. When bt tends to resemble
a uniform distribution, conf approaches 0, indicating low
confidence in our prediction, as no goal stands out as more
probable than others. Conversely, when bt assigns high
probabilities to only a few goals, resulting in low entropy,
conf tends toward 1. This reflects the confidence that our
goal recognition algorithm has identified only a few goals
as likely. Then, we employ policy-blending, one of the most
commonly used methods for shared autonomy [6]. It involves
combining the trajectory desired by the user for the end-
effector with the trajectory desired by the robot. We define
ub as the blend policy and obtain it as follows:

ub = uh(1− α) + urα (4)

Here, uh represents the human policy and ur denotes the
robot policy, with α ∈ [0, 1] serving as a parameter control-
ling the weight of the human and the robot in the blended
policy. The value of α is determined by the conf metric
detailed earlier. Specifically, α = conf if conf ∈ [0.2, 0.8],
0 if conf is smaller than that, and 0.8 otherwise.

III. DISCUSSION

The framework introduced in this paper is an ongo-
ing work aimed at addressing the challenge of dynamic
environments for shared autonomy. As explained earlier,
current shared autonomy approaches struggle with dynamic
environments since the assistance the robot can provide
to the operator is typically limited to a few actions and
objects. This framework could enable dynamic adaptation
to the environment by leveraging MLM, thus providing
assistance to the operator in many more situations than
current frameworks can accommodate. A fast algorithm for
goal recognition, based on Hidden HMM and a landmark
heuristic, is utilized to compute the most likely goal pursued
by the user, and subsequently assists the operator based on
the confidence in our prediction.

We posit that this framework could reduce the cognitive
load on the operator and provide a more robust teleoperation
method in cases of noisy or delayed signals. Furthermore,
in future work, the framework could be adapted to facilitate
cooperation between autonomous robots and humans. The
main distinction would be that instead of collecting data from
the operator, the robot would gather data from an observed
human and then attempt to assist them to the best of its
abilities.
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